a2 United States Patent

US009477895B2

10) Patent No.: US 9,477,895 B2

Hershey et al. 45) Date of Patent: Oct. 25,2016
(54) METHOD AND SYSTEM FOR DETECTING USPC ........ 381/71.4, 71.12, 71.14, 71.3, 71.9, 56,
EVENTS IN AN ACOUSTIC SIGNAL 381/58, 86; 73/114.01, 114.02, 114.03,
SUBJECT TO CYCLO-STATIONARY NOISE 73/35.01, 35.03, 35.04, 35.07, 35.12
(71) Applicant: Mitsubishi Electric Research See application file for complete search history.
{gg)oratorles, Inc., Cambridge, MA (56) References Cited
. U.S. PATENT DOCUMENTS
(72) Inventors: John R. Hershey, Winchester, MA
(US);( Va)msi K. Potluru, Albuquerque, 5,483,936 A *  1/1996 Kerstein ............. GOIL, 23/225
NM (US); Jonathan Le Roux, 123/406.16
Somerville, MA (US) 6,750,798 B2* 6/2004 Honda ....ccooo...... HO3H 17/0211
123/406.34
(73) Assignee: Mitsubishi Electric Research 6,862,517 B2*  3/2005 Galtier ... G(ilzg/ig/g%g
Laboratories, IIIC., Cambrldge, MA 8,474,308 B2 7/2013 Sgatti et al.
(Us) 8,639,502 B1* 1/2014 Boucheron ........... G10L 21/02
381/94.1
(*) Notice:  Subject to any disclaimer, the term of this 8,805,697 B2* 82014 Visser ..o, Glo%é?;‘g
patent is extended or adjusted under 35 N
U.S.C. 154(b) by 209 days. 2002/0097882 Al 7/2002 Greenberg ............. H04R3§?;(5)2
2004/0003651 Al* 1/2004 Rauchfuss ............ GOI1L 23/225
(21) Appl. No.: 14/230,711 73/35.07
2010/0106393 Al* 4/2010 Sgatti .....ccevevvenenee GOI1L 23/221
22) Filed: Mar. 31, 2014 701/111
(22) e ak2h 2015/0114088 Al1* 4/2015 Fischer ............... GOI1L 23/221
(65) Prior Publication Data 73/33.01
US 2015/0281838 A1 Oct. 1, 2015 * cited by examiner
(51) Int. CL Primary Examiner — Vivian Chin
HO4R 29/00 (2006.01) Assistant Examiner — Jason R Kurr
GO6K 9/00 (2006.01) (74) Attorney, Agent, or Firm — Gene Vinokur; James
GO6K 9/62 (2006.01) McAleenan; Hironori Tsukamoto
(52) US. CL
CPC ... GOG6K 9/00973 (2013.01); GO6K 900563  (57) ABSTRACT
(2013.01); GO6K 9/6277 (2013.01); GO6K A method detects events in an accoustic signal subject to
9/6292 (2013.01) cyclostationary background noise by first segmenting the
(58) Field of Classification Search signal into cycles. Features with a fixed dimension are

CPC ... GO1L 23/22; GO1L 23/221; GOI1L 23/223;
FO2D 35/00; F02D 35/027, G10K 2210/128;
G10K 2210/1282; G10K 2210/3038; G10K
2210/3035; G10K 2210/30351; HO4R 1/22;

HO4R 25/507; HO4R 29/00; HO4R 29/004;

GO6K 9/00973; GO6K 9/00563; GO6K

9/6277; GO6K 9/6292

input avoustic signal 2(t)
Fran

derived from the cycles, such that the timing of the features
is relative to a cycle time. The features are normalized using
an estimate of the cyclostationary background noise. Then,
after the normalizing, a classifier is applied to the features to
detect the events.

19 Claims, 5 Drawing Sheets

timing signal
W27
'

Feature

i ("‘ 30

i (\303

NoLowit), a. b7 -—’{

Apply window
wsing Eq. 1

Extract cyele
staxt fend thoes

FFY sive 20 ~‘E

8 big vector

+ =
i |
R
Stack famnes fto | ¥ (Optional)
Max-pool using Bq. 101
7 T

Feature voutors aF

3TN !
+
Foature vectors &°



US 9,477,895 B2

Sheet 1 of 5

Oct. 25, 2016

U.S. Patent

SludAa

\
LS —

L B14

Jossasoud

juaiialueyus
paseqg-japow
(feuopdo)

oiiubooal
wianed

e e v e e e et

-

ori b

siojowesed|” )
i

peubis Bunun

asiou
punocibyseqy
areuwysgy

T 11

ajoko
LOES OS

sa4njeay
SZHEULION sanye

BALIB(]

, 01040
o34

jeubis |
juswbag |

8}

sa4nes} L HJ

591943

x

1z4 " )

L0 ——

jeuBis opsnooe nduy



US 9,477,895 B2

Sheet 2 of 5

Oct. 25, 2016

U.S. Patent

z

e

Z b4

&

P B St \éuov\\i%i\*\f

/_.Aa
oL

N&&&&RNNN“&WRNN&N&RN

»w

|

T e e,

X.

W‘«&&&mmu«a%wmu«&&&mm

ﬁnﬁﬁ..\inmr P




US 9,477,895 B2

Sheet 3 of 5

Oct. 25, 2016

U.S. Patent

(A BIOYIRA DINTEO]

A SIS S8

{renord(y)

08E .f,sv

M
08¢ -

g by Bun

nupEoy Apddy

g T it

rranodineg panold

gy pyrudony

o
3

e

5

%

0¢

e’ COE

RUPE Fuun

¢ By Fugn , m
wnrads soaod b JE AR LA
] aniconoy :
i
aze |
11
m
4
MA \\\\\\\\ L
Fursganoud
2IRag

b yeuds opsnere g




US 9,477,895 B2

Sheet 4 of 5

Oct. 25, 2016

U.S. Patent

v "Bi1d4

7 M

w1 Fary gy £, P r PR = B o TETEORIE Y TTTYE T
G D UL P 10 § DI UL SUZIITITED A IDLISSED Uel],

773 :

| S——

i ozy J 0

Chpaqencirmomn s ¢4 Ty T
Surssonnad singeag

.

Mitaamnsmnasamnsnnaaast

|

oLy ./

SlR8] JuoA reuSs Sunmyg reuds snsnoor gndug

oy 1 o~



US 9,477,895 B2

Sheet 5 of 5

Oct. 25, 2016

U.S. Patent

T Y

| ——

sxapourered pourerny

Bussonoad aanywag

P2 ™

| —

J
oLy )

o
o5 — 208 o8

reuds Sunn s onsnooy gndu



US 9,477,895 B2

1
METHOD AND SYSTEM FOR DETECTING
EVENTS IN AN ACOUSTIC SIGNAL
SUBJECT TO CYCLO-STATIONARY NOISE

FIELD OF THE INVENTION

The invention relates generally to detecting typically
low-energy and relatively rare acoustic events, and more
particularly to detecting the events in an accoustic signal
subject to cyclo-stationary background noise.

BACKGROUND OF THE INVENTION

Anomalities in mechanisms can sometimes be character-
ized by their accoustic signatures or events. The accoustic
events are typically rare, and overwhelmed by background
noise. Situations in which this background noise is cyclo-
stationary are common, e.g., with rotating mechanisms,
where the background noise signal is not periodic, but its
statistical properties are periodic.

Detecting relatively rare and typically low-energy events
in such background noise can lead to useful applications, but
is challenging. One such application is that of vehicle engine
knock detection. When an engine rotates at a high speed, and
depending on running and environmental conditions, uncon-
trolled explosions can occur at certain cycles, which can lead
to potential damage to the engine.

However, sometimes the most fuel efficient operating
point corresponds to conditions in which knocks occur, and
therefore engine manufacturers typically try to control their
engine such that they run in conditions as close as possible
to knocking conditions, but without creating significant
knocks.

Knock detection sensors and devices are required to
control the running conditions of engines. The sensors are
typically accelerometers. The detection devices, e.g., engine
control units, generally tend to rely on simple filtering and
thresholding techniques, and their accuracy is limited. Those
devices and sensors are typically tuned by an expert who
detect knocks by listening to the engine and calibrate the
sensors so that: their location as well as their detection
thresholds are set such that the detections match those of the
expert. The expert can use various sensors processed
through some signal processing methods as side informa-
tion, e.g., cylinder pressure, ion current, etc. Such calibra-
tion is highly time-consuming, error-prone, tiring, and
requires a highly skilled expert. It would be useful to have
a method of replacing or assisting an expert to automatically
tune the control unit and sensor.

SUMMARY OF THE INVENTION

The embodiments of the invention provide a method and
system for detecting events in an accoustic signal subject to
cyclo-stationary noise. The invention solves the problem of
intermittent event detection in noisy signals. This can be
challenging due to the presence of noise, and the difficulty
of obtaining precise labels of the events. Of special interest
is the case where the noise results from a repetitive mecha-
nism, and hence the noise can be characterized as cyclo-
stationary.

The cyclo-stationarity can be exploited by signal process-
ing methods to produce features that accentuate deviations
from the background noise. To detect the events, a classifier
or pattern recognizer is trained on features for which labels
are available. However, in some applications, only labels at
the level of whole segments of signal containing many
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cycles are available. Nevertheless, some applications require
detection of the precise timing of the events. In this case, a
multiple instance learning objective function can be opti-
mized to produce a classifier for individual cycles.

The method segments the input acoustic signal into
cycles, and then derives features with a fixed dimension
from regions distributed within the cycles, such that the
timing of the features is relative to the cycle time rather than
an absolute time, and a placement of the regions is a function
of a length of each cycle. A number of the regions is fixed
for all the cycles. The features are normalized using an
estimate of the cyclo-stationary background noise. Option-
ally, using a model-based noise suppression method, the
features can be enhanced. The model-based suppression
method can use non-negative matrix factorization, neural
networks, or Gaussian mixture models. Then, pattern rec-
ognition is applied to the features to detect the events.

Parameters of the pattern recognition are trained on some
labeled training data. In some cases, this can be challenging,
because of the lack of precise labels. In such cases, multiple
instance learning is used.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a method and system for
detecting events in a signal subject to cyclo-stationary noise
according to embodiments of the invention;

FIG. 2 is a timing diagram of window placement in cycles
according to embodiments of the invention;

FIG. 3 is a flow diagram of feature processing according
to embodiments of the invention;

FIG. 4 is a flow diagram of training according to embodi-
ments of the invention; and

FIG. 5 is a flow diagram of testing according to embodi-
ments of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

As shown in FIG. 1, the embodiments of the invention
provide a method and system for detecting events in an
accoustic signal 101 subject to cyclo-stationary noise. For
example, the signal is acquired from a running engine or
machine with an air microphone.

As shown in FIG. 1, the embodiments of our invention
provide a method and system for detecting, in the acoustic
signal 101, events subject to cyclo-stationary noise. First,
the signal is segmented 110 into cycles 111. A timing signal
102 can be used as side information for the segmenting. For
each cycle, features 121 are derived 120 from regions
distributed within the cycles. For example, the features can
be obtained from spectrograms.

The features have fixed dimension, such that the timing of
the features is relative to the cycle time rather than an
absolute time. Background noise is also estimated 125.
Then, the features are normalized 130 using the estimate of
the cyclo-stationary background noise. Optionally, the fea-
tures can be enhanced 140 using a model-based noise
suppression procedure. The model-based suppression pro-
cedure can use non-negative matrix factorization, neural
networks, or Gaussian mixture models. Lastly, during test-
ing, the events 151 are detected using model parameters 152
and a classifier or pattern recognizer 150.

The steps of the method can be performed in a processor
100 connected to memory and input/output interfaces by
buses as known in the art. The signal 101 can be in the form
of time series data including a cyclic pattern of background



US 9,477,895 B2

3

noise, as well as intermittent events. The cycle intervals are
roughly the same length of time, which can be easily
determined for a particular machine or engine, or otherwise
obtained from the timing signal 102, e.g., a spark signal in
an internal combustion signal. We assume here that each
single event is located within one cycle so that the event
does not affect the signal outside the cycle.

Signal Processing

Tune-Frequency Analysis Robust to Cycle Length

As shown in FIG. 2, we use the timing signal 102 to
determine a placement of a set of windows in each cycle
with respect to the input acoustic signal 101, where T is an
offset, a is an offset ratio, b is a shift ratio, N is a number of
windows per cycle, L is a window length, 1, and 1,* are the
start and end times of the k-th cycle obtained from the timing
signal, and T* the length of that: cycle. A potential role for
the offset T is to synchronize the start and end times obtained
from the timing signal with what is considered to be the start
and end time of a cycle in the input acoustic signal. The
offset ratio a can be used to shift the focus of the set of
windows relatively to the cycle. The number N of windows
for each cycle is fixed, while the use of a shift ratio b allows
us to vary the spacing between windows to account for
variations in the cycle length. This is important in order to
apply a conventional classification algorithm, because the
features for such classification, algorithms need to have the
same size for all samples, which are here the cycles.

In the case of engine knock detection, the timing signal
can be a spark signal obtained directly from the distributor.
The start and end time of a cycle in the input acoustic signal
can be considered to be the timing of one of the cylinders
reaching the position known as top-dead center (TDC),
further offset by the time it takes for the sound to travel in
the air from the engine to the microphone with which the
input acoustic signal is recorded. The offset r can thus be
computed so as to modify the spark times, obtained from
peaks in the spark signal, by accounting for the relative
timing of the spark with respect to TDC, which is repre-
sented by a spark advance angle in degrees, as well as for a
difference in time required to acquire the timing signal and
the acoustic signal, which depends on the distance to the
microphone. If one denotes by a [deg] the spark advance
angle (e.g., +12 indicates that the spark occurs 12 degrees
before TDC), by RPM [rotation per minute]| the rotation
speed (note that by one rotation we here mean 360°, while
a “cycle” in a 4-stroke engine corresponds to 720°), d [m]
the distance to the microphone (d=0 for accelerometers), and
¢ [m/s] the speed of sound, we can compute the offset T to
apply to the cycle start and end times to align them with the
microphone signal according to:

a d

= 4.
TTERPM G

FIG. 3 shows the details of the feature processing. Input
is an acoustic signal 301, and a timing signal 302. For
example, for detecting engine knock, the timing signal can
be a spark signal. The timing signal is used to extract 303 the
start and end times of the cycles.

We denote by x(t) the acoustic signal 301. A time-
frequency representation of x(t) in each cycle is obtained by
applying the set of windows described above to x(t) to obtain
a set of frames for each cycle, and taking the discrete Fourier
transform of each frame, for example using the fast Fourier
transform algorithm.
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If an analysis window of length L is denoted as w, then the
n-th frame of the k-th cycle is obtained 310 as

PG :w(t)-x(z’{ +T+aT - Ii +(n— DbT* +l‘+1), W
r=0,... ,L-1.

In particular, one can use a sine window (square root of
the Hann window) for analysis:

@

1 2n(r+ 1)
——cos( ],I:O,...

,L-1.
L

Then, the power spectra are determined 320 by taking, for
example, the. Fourier transform with the window size or
double the window size as the Fourier transform size. The
power spectrum of the n-th frame of the k-th cycle is

2 3)
,w=0,..., L

-1

. '
Z X ([)e—ﬂmu a7

=0

ko
Ko =

Note that one only needs to keep the “non-negative”
frequencies, i.e., from DC to the Nyquist frequency, or
w=0, ..., L, because the “negative” frequencies, i.e., above
Nyquist frequency or w=L+1, . . ., 2 L-1, are redundant.

The power spectra for the frames of a cycle are concat-
enated in the time dimension to obtain a spectrogram-like
representation for the complete cycle.

Filtering

We use a filtering technique to remove the cyclo-station-
ary component from the signal. To do this we compute 305
the background noise as follows. The general idea is to
determine some average X over all cycles and to use the
average to normalize features in each cycle. The simplest
example of such an average is the mean for all cycles
independently for each time-frequency bin:

N @
X =

1 K
EZ x5,
k=1

It is understood that other formulations can be used to
compute the average.

We can then normalize 330 each cycle as follows:

ko xk (&)
X = =2 NV k, n, .
nity

If the number of cycles where an event occurs is small
compared to the total number of cycles K, then the mean is
likely to be a good estimator of the cyclo-stationary com-
ponent. In the other extreme, if the number of cycles where
events occur is large, then we can use more robust estima-
tors, such as the median.
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Finally, we apply 340 a logarithm to improve the dynamic
range:

N —k 6
Xl;wzlong,Vk,n,w. ©

We stack 350 frames into a large vector, and optionally
use 360 a max-pool, described below, to obtain feature
vectors 370.

Classification

The features can be fed to a classifier to learn the model
parameters. However, our task is complicated by the fact
that we may not have access to precise labels or if we do, it
may only be for a small number of samples. To overcome
this issue, we can consider the multiple instance framework
from machine learning in which multiple samples are com-
bined into a “bag” with a corresponding label. A positive bag
is one which has one or more positive instances and a
negative bag is one in which all instances are negative.

Before we describe the multiple instance framework, we
briefly review the case where labels are available for all
training samples. We can use logistic regression (LR) as the
classifier here, as an example, but other classifiers could be
used.

Learning with Labels for Each Sample

Logistic Regression (LR) Model

Let {(x',y), ..., (X" y,)} be a set of training samples,
where ¥ is a feature vector and y, a corresponding
label. In our context, ¥ is a vectorized version of
XDt Niw=o, . .. ; defined in Eq. 6, obtained, for
example, by stacking 350 all frames (X,1),_, v into a
single vector.

Under the logistic regression model with parameters

-----

-----

the probability that feature vector x; corresponds to a posi-
tive sample is modeled as:

‘. %
P(y:”xae):Pi:—r_i,
1+e 7%

where

extends the feature vector to include a bias term, and the
probability that the feature vector corresponds to a negative
sample as:

®

ply=0]x.0)=gi=—— =1-p;.
1+ e

The model parameters 152 are trained so as to maximize
the likelihood of the training data under the model, which
amounts to minimizing the negative log-likelihood objective
function ¢*% () defined as
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9RO = 3 [a yilog(py) + (1 = yplog(l = pol + BwllWIl + Bylitll, )
where o, @, By and 3, are weights. The last two terms

correspond to a regularization of the parameters and usually
involve either the L, or L, norm of W and/or b, correspond-
ing to prior probabilities of sparseness and smoothness
respectively. A conventional setting for o, and o s
a,=N,anda =N where N, and N_ are the number of
positive and negative training samples, respectively. Typi-
cally, B, is set to 0, meaning that the bias term is not
regularized: the main goal of regularization is to avoid a
particular feature taking too much importance on the train-
ing data, leading to overfilling, but there is no such concern
for the bias term.

After the parameters 0 have been trained, they can be used
to give posterior probabilities on test data. using Eqs. 7 and
8.

FIG. 4 shows the training procedure, which takes as input
the acoustic signal 301, the timing signal 302, and event
labels 401. Features are processed 410 as described, above,
and the classifier is trained. 420 by learning the model
parameters 152 using Eqn. (9).

FIG. 5 shows how signals are tested. Inputs are the
acoustic signal, the timing signal, and model parameters
591. Features are processed, as before, and the posterior
probabilities p(ylx’,6) are computed 510 using Egs (7) and
(8). The training and testing steps can be performed in a
processor.

Multiple Instance Learning (MIL)

In an multiple instance learning framework, the label
information is only available at the level of a “bag” of
multiple instances, instead of each single instance or sample.
When a bag of samples is given a negative label, it means
that all the instances in the bag are negative. However, if a
bag is given a positive label, it means that at least one (but
maybe more) samples in the bag are positive.

This type of situation typically occurs when an expert
labels some data acquired over a large time interval, and
determines whether there was, or not, at least one event in,
say, each minute of data, without giving further precision as
to where that or those event(s) actually occurred within the
minute.

There are several ways of dealing with such a situation.
The first is to perform both training and testing at the level
of bags of samples, in effect falling back onto a situation
where a label is given for each “training sample,” a training
sample now corresponding to a bag as a whole: in that case,
no prediction can be made at the level of a single cycle, only
at the level of a bag of cycles.

An example of such a method consists in “pooling” the
features in a bag to obtain a feature vector similar to that of
as single sample (here, a cycle), and to use the classical
framework examplified above with logistic regression. This
is described below.

A second way, which enables detection of events at: the
cycle level, is to train a classifier that performs classification
at the level of a single instance by changing the objective
function so that only information at the bag level is used.
This is also described below.

Bag-Level Classification with Max Pooling

Let {B..y1), Bs,¥2), - - -, (B,.¥,.)} denote a set of bags
and their corresponding labels, where B,=|x'", x2, .. ., x|,
x? is the j-th feature vector, the feature vector of the j-th
cycle, of the i-th bag, and n, is the size of the i-th bag.
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We can circumvent the lack of label information at the
instance level by summarizing the instances of a bag into a
single sample. These summarized features along with the
bag level labels enable us to apply conventional supervised
learning methods. One way to summarize the instances in a
bag is to “pool” the features of all elements in the bag, for
example using the maximum, which results in a so-called
max-pooling procedure 360. The feature vector for bag B, is
defined as:

10

where 1 is an index that here corresponds to a pair (n,m) in
the vectorized form of &,,.,”. By using {(X',y,), ..., ®"y,)}
as the training data, we can apply a conventional classical
logistic regression framework as described above.
However, a disadvantage of this approach is that we have
a trained a model at the bag level, and there is no guarantee
that it will perform well at the instance level: in other words,
the classifier is trained to classify feature vectors X' that are
“max-pooled” for elements in a bag B,, and may not perform
well on one of the non-pooled feature vectors x7.
Instance-Level Classifier
We now describe a model that works well at the instance
and at the bag level, Such a model, is the most useful in
practice because the model only requires bag-level labels,
while still be able to perform instance-level classification.
We can adapt the logistic regression model to the multiple
instance framework. As described above, in a negative bag,
have all elements are negative, and the probability for a bag
B, to be negative under the logistic regression model with
parameter 0 is:

Ll ;

py=01B0=gs =[] poi; =015, 0 =] [ au.
=l

an

=1

where p(yl.jZOIxij,e) is defined similarly as in Eq. 8.

On the other hand, a positive bag only needs to have at
least one positive element to be positive. This is not easily
written in terms of probabilities on the elements of the bags,
and we simply express the probability for a bag to be
positive as that not to be negative:

Py =118, 0) = pg; =1-[ | pyiy =012, 6) =1~ | .

J=1

(12

=1

Similarly to conventional logistic, regression case, the
parameters of the model can be trained by minimizing the
negative log-likelihood objective function ¢** (0):

a3
¥

i

M) = —Z [a, y;log[l -1 q;j] +a (=3 loglgi))
=1

=1

BuwllWil + Bolibll.

A major difficulty with the above objective function is the
presence, inside the logarithm, of a product of potentially
many terms that can be either very small or very close to 1.

10

15

20

25

30

35

40

45

50

55

60

8

Combined Model

The instance-level model can be combined with the
bag-level model. The idea is that when a bag contains a large
number of positive instances, it is better summarized by
bag-level features, while instance-level features are pre-
ferred when the number of positive instances is low. A
weighted model, which combines the two approaches is
learnt, and the weight parameters are adaptively tuned to the
data set.

Optimization of the Instance-Level Classifier

Unlike the logistic regression model, the MIL framework
described above leads to a non-convex formulation. The
gradient: for a positive bag can be obtained as:

i (14)
1_[ Gik
k=1

Bip;
& 17p;

1=TI gu
k=1

Gradient positive bag =

where p,=[p;1s Psas - - - s P 18 the vector of probabilities for
the instances in bag i beiﬁg positive, q,,=1-p,, and 1 is a
vector of all ones. The gradient for a negative bag is the
same as in the case of logistic regression and is as follows:

Gradient negative bag = Z GiZuexp(0T ). )
X

Instead of computing the Hessian H, we provide a matrix-
free version of the Hessian vector product computation. That
is, given some vector v, one can efficiently compute the
matrix vector product Hv, as follows:

” Xik V*(Z jfipij] {16
Hy = Z Gt P (V' %)X — pi

B S
e 1-Thgs

The gradient combined with the Hessian can be input to
conventional optimization procedures, as Newton conjugate
gradient, to minimize the MIL objective, Because the prob-
lem is non-convex we can only expect local convergence
and good initializers are key to finding meaningful solutions.

Although the invention has been described by way of
examples of preferred embodiments, it is to be understood
that various other adaptations and modifications can be
made within the spirit and scope of the invention. Therefore,
it is the object of the appended claims to cover all such
variations and modifications as come within the true spirit
and scope of the invention.

We claim:

1. A method for detecting events in a signal subject to
cyclostationary background noise, wherein the signal is an
acoustic signal, the method comprising:

segmenting the signal into cycles;

determining within each cycle a sequence of regions,

wherein a number of regions in the sequence is a fixed
number for the cycles, and a placement within the cycle
of each region in the sequence is a function of a length
of the cycle;

deriving region features with a fixed dimension from each

region within the sequence of regions for each cycle for
the cycles;
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deriving cycle features for each cycle by concatenating
the region features for the regions within the sequence
of regions for the cycle;

calculating an average of the cycle features over the

cycles for obtaining an estimate of the cyclostationary
background noise;

normalizing the cycle features for each cycle using the

estimate of the cyclostationary background noise; and
applying, after the normalizing, a classifier to the cycle
features to detect the events, and

using the detected events to tune a control unit of a

machine,

wherein the steps are performed in a processor.

2. The method of claim 1, further comprising acquiring,
using an air microphone, the signal from a running engine or
machine.

3. The method of claim 2, wherein the segmenting is
according to a timing signal, the timing signal is used to
extract start and end times of the cycles, and the timing
signal assists in detecting engine knock.

4. The method of claim 3, wherein the timing signal is a
spark signal.

5. The method of claim 2, wherein the events are engine
knocks.

6. The method of claim 1, further comprising:

enhancing the features using a model-based cyclo-station-

ary noise suppression method.

7. The method of claim 6, wherein the model-based
cyclostationary noise suppression method is based on non-
negative matrix factorization.

8. The method of claim 6, wherein the model-based
cyclostationary noise suppression method is based on arti-
ficial neural networks.

9. The method of claim 6, wherein the model-based
cyclostationary noise suppression method is based on
Gaussian mixture models.

10. The method of claim 1, wherein the signal is modeled
as a sum of a cyclostationary component and an event
component.

11. The method of claim 1, wherein the segmenting
further comprises:

estimating a start time and an end time of each cycle.

12. The method of claim 1, wherein the regions are
analysed using a square root of Hann window.
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13. The method of claim 1, wherein the features are
derived from spectrograms.

14. The method of claim 1, wherein the classifier uses
logistic regression.

15. The method of claim 1, wherein the classifier uses
multiple instance logistic regression.

16. The method of claim 1, wherein, after the normalizing,
the features are pooled for multiple cycles.

17. The method of claim 1, further comprising:

estimating a start time and an end time of each cycle, and

wherein the estimating includes an offset to synchro-
nize a start and an end time obtained from a timing
signal with a start and end times of the cycle.

18. The method of claim 17, wherein the offset accounts
for a difference in time required to acquire the timing signal
and the acoustic signal.

19. A system for detecting events in a signal subject to
cyclostationary background noise, wherein the signal is an
acoustic signal, the system comprising:

a processor, coupled to a data storage memory unit, the

processor configured to perform the steps of:
segmenting the signal into cycles;

determining within each cycle a sequence of regions,

wherein a number of regions in the sequence is a fixed
number for the cycles, and a placement within the cycle
of each region in the sequence is a function of a length
of the cycle;

deriving region features with a fixed dimension from each

region within the sequence of regions for each cycle for
the cycles;

deriving cycle features for each cycle by concatenating

the region features for the regions within the sequence
of regions for the cycle;

calculating an average of the cycle features over the

cycles for obtaining an estimate of the cyclostationary
background noise;

normalizing the cycle features for each cycle using the

estimate of the cyclostationary background noise; and
applying, after the normalizing, a classifier to the cycle

features to detect the events, and using the detected

events to tune a control unit of a machine, and

using the detected events to tune a control unit of a

machine.



